Photos and biography for talks

Photos and biography for talks


Alán Aspuru-Guzik
Professor at the University of Toronto
Faculty Member, Vector Institute

Alán Aspuru-Guzik’s research lies at the interface of computer science with chemistry and physics. He works in the integration of robotics, machine learning and high-throughput quantum chemistry for the development of materials acceleration platforms. These “self-driving laboratories¨ promise to accelerate the rate of scientific discovery, with applications to clean energy and optoelectronic materials. Alán also develops quantum computer algorithms for quantum machine learning and has pioneered quantum algorithms for the simulation of matter. He is jointly appointed as a Professor of Chemistry and Computer Science at the University of Toronto. Alán is a faculty member of the Vector Institute for Artificial Intelligence. Previously, Alán was a full professor at Harvard University where he started his career in 2006. Alán is currently the Canada 150 Research Chair in Quantum Chemistry as well as a CIFAR AI Chair at the Vector Institute. Amongst other awards, Alán is a recipient of the Google Focused Award in Quantum Computing, the MIT Technology Review 35 under 35, and the Sloan and Camille and Henry Dreyfus Fellowships. Alán is a fellow of the American Association of the Advancement of Science and the American Physical Society. He is a co-founder of Zapata Computing and Kebotix, two early-stage ventures in quantum computing and self-driving laboratories respectively.

“Quantum algorithms for near-term quantum computers.”
We are in the NISQ era of quantum computing. NISQ stands for “Near-term intermediate-scale quantum computer”. These machines are not error corrected and have of the order of tens of quantum bits. In this talk, I will discuss a family of quantum algorithms that are promising applications for these devices that my group and others have developed. I will discuss potential applications for the simulation of chemistry and materials and quantum machine learning.

“The Materials for Tomorrow, Today.”
In this talk, I argue that for materials discovery, one needs to go beyond simple computational screening approaches followed by traditional experimentation. I have been working on the design and implementation of what I call “materials acceleration platforms” (MAPs). MAPs are enabled by the confluence of three disparate fields, namely artificial intelligence (AI), high-throughput quantum chemistry (HTQC), and robotics. The integration of prediction, synthesis and characterization in an AI-driven closed-loop approach promises the acceleration of materials discovery by a factor of 10, or even a 100. I will describe our efforts under the Mission Innovation umbrella platform around this topic.